Правило левой руки физика. В чем измеряется сила тока: правило буравчика и правой руки. Простые приемы запоминания правил буравчика

Часто бывает, что задачу не удается решить из-за того, что под рукой нет нужной формулы. Выводить формулу с самого начала – дело не самое быстрое, а у нас на счету каждая минута.

Ниже мы собрали вместе основные формулы по теме «Электричество и Магнетизм». Теперь, решая задачи, вы сможете пользоваться этим материалом как справочником, чтобы не терять время на поиски нужной информации.

Магнетизм: определение

Магнетизм – это взаимодействие движущихся электрических зарядов, происходящее посредством магнитного поля.

Поле – особая форма материи. В рамках стандартной модели существует электрическое, магнитное, электромагнитные поля, поле ядерных сил, гравитационное поле и поле Хиггса. Возможно, есть и другие гипотетические поля, о которых мы пока что можем только догадываться или не догадываться вовсе. Сегодня нас интересует магнитное поле.

Магнитная индукция

Так же, как заряженные тела создают вокруг себя электрическое поле, движущиеся заряженные тела порождают магнитное поле. Магнитное поле не только создается движущимися зарядами (электрическим током), но еще и действует на них. По сути магнитное поле можно обнаружить только по действию на движущиеся заряды. А действует оно на них с силой, называемой силой Ампера, о которой речь пойдет позже.


Прежде чем мы начнем приводить конкретные формулы, нужно рассказать про магнитную индукцию.

Магнитная индукция – это силовая векторная характеристика магнитного поля.

Она обозначается буквой B и измеряется в Тесла (Тл ) . По аналогии с напряженностью для электрического поля Е магнитная индукция показывает, с какой силой магнитное поле действует на заряд.

Кстати, вы найдете много интересных фактов на эту тему в нашей статье про .

Как определять направление вектора магнитной индукции? Здесь нас интересует практическая сторона вопроса. Самый частый случай в задачах – это магнитное поле, создаваемое проводником с током, который может быть либо прямым, либо в форме окружности или витка.

Для определения направления вектора магнитной индукции существует правило правой руки . Приготовьтесь задействовать абстрактное и пространственное мышление!

Если взять проводник в правую руку так, что большой палец будет указывать на направление тока, то загнутые вокруг проводника пальцы покажут направление силовых линий магнитного поля вокруг проводника. Вектор магнитной индукции в каждой точке будет направлен по касательной к силовым линиям.


Сила Ампера

Представим, что есть магнитное поле с индукцией B . Если мы поместим в него проводник длиной l , по которому течет ток силой I , то поле будет действовать на проводник с силой:

Это и есть сила Ампера . Угол альфа – угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Направление силы Ампера определяется по правилу левой руки: если расположить левую руку так, чтобы в ладонь входили линии магнитной индукции, а вытянутые пальцы указывали бы направление тока, отставленный большой палец укажет направление силы Ампера.


Сила Лоренца

Мы выяснили, что поле действует на проводник с током. Но если это так, то изначально оно действует отдельно на каждый движущийся заряд. Сила, с которой магнитное поле действует на движущийся в нем электрический заряд, называется силой Лоренца . Здесь важно отметить слово «движущийся» , так на неподвижные заряды магнитное поле не действует.

Итак, частица с зарядом q движется в магнитном поле с индукцией В со скоростью v , а альфа – это угол между вектором скорости частицы и вектором магнитной индукции. Тогда сила, которая действует на частицу:

Как определить направление силы Лоренца? По правилу левой руки. Если вектор индукции входит в ладонь, а пальцы указывают на направление скорости, то отогнутый большой палец покажет направление силы Лоренца. Отметим, что так направление определяется для положительно заряженных частиц. Для отрицательных зарядов полученное направление нужно поменять на противоположное.


Если частица массы m влетает в поле перпендикулярно линиям индукции, то она будет двигаться по окружности, а сила Лоренца будет играть роль центростремительной силы. Радиус окружности и период обращения частицы в однородном магнитном поле можно найти по формулам:

Взаимодействие токов

Рассмотрим два случая. Первый – ток течет по прямому проводу. Второй – по круговому витку. Как мы знаем, ток создает магнитное поле.

В первом случае магнитная индукция провода с током I на расстоянии R от него считается по формуле:

Мю – магнитная проницаемость вещества, мю с индексом ноль – магнитная постоянная.

Во втором случае магнитная индукция в центре кругового витка с током равна:

Также при решении задач может пригодиться формула для магнитного поля внутри соленоида. – это катушка, то есть множество круговых витков с током.


Пусть их количество – N , а длина самого соленоилда – l . Тогда поле внутри соленоида вычисляется по формуле:

Кстати! Для наших читателей сейчас действует скидка 10% на

Магнитный поток и ЭДС

Если магнитная индукция – векторная характеристика магнитного поля, то магнитный поток – скалярная величина, которая также является одной из самых важных характеристик поля. Представим, что у нас есть какая-то рамка или контур, имеющий определенную площадь. Магнитный поток показывает, какое количество силовых линий проходит через единицу площади, то есть характеризует интенсивность поля. Измеряется в Веберах (Вб) и обозначается Ф .

S – площадь контура, альфа – угол между нормалью (перпендикуляром) к плоскости контура и вектором В .


При изменении магнитного потока через контур в контуре индуцируется ЭДС , равная скорости изменения магнитного потока через контур. Кстати, подробнее о том, что такое электродвижущая сила , вы можете почитать в еще одной нашей статье.

По сути формула выше – это формула для закона электромагнитной индукции Фарадея. Напоминаем, что скорость изменения какой-либо величины есть не что иное, как ее производная по времени.

Для магнитного потока и ЭДС индукции также справедливо обратное. Изменение тока в контуре приводит к изменению магнитного поля и, соответственно, к изменению магнитного потока. При этом возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре. Магнитный поток, который пронизывает контур с током, называется собственным магнитным потоком, пропорционален силе тока в контуре и вычисляется по формуле:

L – коэффициент пропорциональности, называемый индуктивностью, который измеряется в Генри (Гн) . На индуктивность влияют форма контура и свойства среды. Для катушки с длиной l и с числом витков N индуктивность рассчитывается по формуле:

Формула для ЭДС самоиндукции:

Энергия магнитного поля

Электроэнергия, ядерная энергия, кинетическая энергия. Магнитная энергия – одна из форм энергии. В физических задачах чаще всего нужно рассчитывать энергию магнитного поля катушки. Магнитная энергия катушки с током I и индуктивностью L равна:

Объемная плотность энергии поля:

Конечно, это не все основные формулы раздела физики « электричество и магнетизм» , однако они часто могут помочь при решении стандартных задач и расчетах. Если же вам попалась задача со звездочкой, и вы никак не можете подобрать к ней ключ, упростите себе жизнь и обратитесь за решением в

С помощью правил левой и правой руки с легкостью можно найти и определить направления тока, магнитных линий, а также других физических величин.

Правило буравчика и правой руки

Правило буравчика впервые было сформулировано известным физиком Петром Буравчиком. Его удобно использовать, чтобы определить направленность напряженности. Итак, формулировка правила такова: в случае когда буравчик, двигающийся поступательно, вкручивается по направлению электрического тока, направленность рукоятки самого буравчика должна совпасть с направленностью магнитного поля. Данное правило можно применить с соленоидом: обхватываем соленоид, пальцы должны показывать туда же, куда и ток, то есть показать путь тока в витках, дальше оттопыриваем большой палец правой руки, он и указывает на нужное путь линий магнитной индукции.

Правило правой руки употребляют по статистике гораздо чаще правила буравчика, от части из — за более понятной формулировки, оно гласит: обхватываем предмет правой рукой, при этом сжатые пальцы кулака должны показывать направление магнитных линий, а оттопыренный приблизительно на 90 градусов большой палец должен показать направление электрического тока. Если присутствует движущийся проводник: руку следует развернуть таким образом, чтобы силовые линии данного поля были перпендикулярны ладони (90 градусов) , оттопыренный большой палец должен показать на путь движения проводника, тогда 4 загнутых пальца укажут на путь индукционного тока.

Правило левой руки

У правила левой руки существуют две формулировки. Первая формулировка гласит: следует разместить руку, чтобы оставшиеся загнутые пальцы руки указывали на путь электрического тока в данном проводнике, линии индукции должны быть перпендикулярны ладони, а выставленный большой палец левой руки указывает на силу, оказывающую воздействие на данный проводник. Следующая формулировка гласит: четыре согнутых пальца руки, кроме большого располагаются именно по движению отрицательно заряженных или положительно заряженных электрического тока, а линии индукции при этом должны перпендикулярно (90 градусов) направляться в ладонь, в этом случае выставленный большой в данном случае должен показать на течение силы Ампера или же силы Лоренца.

Тест по физике Правило левой руки. Обнаружение магнитного поля по его действию на электрический ток для учащихся 9 класса с ответами. Тест включает в себя 10 заданий с выбором ответа.

1. Направление тока в магнетизме совпадает с направлением движения

1) электронов
2) отрицательных ионов
3) положительных частиц
4) среди ответов нет правильного

2. Квадратная рамка расположена в однородном магнитном поле так, как показано на рисунке. Направление тока в рамке указано стрелками.

Сила, действующая на нижнюю сторону рамки, направлена

3. Электрическая цепь, состоящая из четырех прямолинейных горизонтальных проводников (1-2, 2-3, 3-4, 4-1) и ис­точника постоянного тока, находится в однородном магнит­ном поле, силовые линии которого направлены вертикально вверх (см. рис., вид сверху).

1) горизонтально вправо
2) горизонтально влево
3) вертикально вверх
4) вертикально вниз

4. Электрическая цепь, состоящая из четырех прямолиней­ных горизонтальных проводников (1-2, 2-3, 3-4, 4-1) и источника постоянного тока, находится в однородном магнитном поле, линии которого направлены горизонтально вправо (см. рис., вид сверху).

5. В основе работы электродвигателя лежит

1) действие магнитного поля на проводник с электрическим током
2) электростатическое взаимодействие зарядов
3) явление самоиндукции
4) действие электрического поля на электрический заряд

6. Основное назначение электродвигателя заключается в преобразовании

1) механической энергии в электрическую энергию
2) электрической энергии в механическую энергию
3) внутренней энергии в механическую энергию
4) механической энергии в различные виды энергии

7. Магнитное поле действует с ненулевой по модулю силой на

1) покоящийся атом
2) покоящийся ион
3) ион, движущийся вдоль линий магнитной индукции
4) ион, движущийся перпендикулярно линиям магнитной индукции

8. Выберите верное(-ые) утверждение(-я).

А. для определения направления силы, действующей на по­ложительно заряженную частицу, следует четыре паль­ца левой руки располагать по направлению скорости ча­стицы
Б. для определения направления силы, действующей на от­рицательно заряженную частицу, следует четыре пальца левой руки располагать против направления скорости частицы

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

9. Положительно заряженная частица, имеющая горизонтально направлен­ную скорость v

1) Вертикально вниз
2) Вертикально вверх
3) На нас
4) От нас

10. Отрицательно заряженная частица, имеющая горизонтально направлен­ную скорость v , влетает в область поля перпендикулярно магнитным ли­ниям. Куда направлена дей­ствующая на частицу сила?

1) К нам
2) От нас
3) Горизонтально влево в плоскости рисунка
4) Горизонтально вправо в плоскости рисунка

Ответы на тест по физике Правило левой руки Обнаружение магнитного поля по его действию на электрический ток
1-3
2-4
3-2
4-3
5-1
6-2
7-4
8-3
9-4
10-2

ПРАВИЛО ПРАВОЙ РУКИ, определяет направление индукционного тока в проводнике, движущемся в магнитном поле. Если ладонь правой руки расположить так, чтобы в нее входили силовые линии магнитного поля, а отогнутый большой палец направить по движению… … Энциклопедический словарь

ПРАВИЛО ПРАВОЙ РУКИ, см. ПРАВИЛА ФЛЕМИНГА … Научно-технический энциклопедический словарь

правило правой руки - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Fleming s ruleright hand rule … Справочник технического переводчика

правило правой руки - удобное для запоминания правило для определения направления индукционного тока в проводнике, движущегося в магнитном поле: если расположить правую ладонь так, чтобы отставлtysq большой палец совпадал с направлением движения… … Энциклопедический словарь по металлургии

правило правой руки - dešinės rankos taisyklė statusas T sritis fizika atitikmenys: angl. right hand rule vok. Rechte Hand Regel, f rus. правило правой руки, n pranc. règle de la main droite, f … Fizikos terminų žodynas

Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (также, правило правой руки) мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость … Википедия

Определяет направление индукционного тока в проводнике, движущемся в магнитном поле. Если ладонь правой руки расположить так, чтобы в нее входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то 4… … Большой Энциклопедический словарь

Для определения направления индукц. тока в проводнике, движущемся в магн. поле: если расположить правую ладонь так, чтобы отставленный большой палец совпадал с направлением движения проводника, а силовые линии магн. поля входили в ладонь, то… … Физическая энциклопедия

Определяет направление индукционного тока в проводнике, движущемся в магнитном поле. Если ладонь правой руки расположить так, чтобы в неё входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то… … Энциклопедический словарь

С момента создания электричества было проделано много научной работы в физике по изучению его характеристик, особенностей и влияния на окружающую среду. Правило буравчика внесло свой значимый след в изучение магнитного поля, закон правой руки для цилиндрической обмотки провода позволяет глубже понять процессы, проходящие в соленоиде, а правило левой руки характеризует силы, влияющие на проводник с током. Благодаря правой и левой руке, а также мнемоническим приемам можно с легкостью эти закономерности изучить и понять.

Принцип буравчика

Достаточно долгое время магнитные и электрические характеристики поля изучались физикой раздельно. Однако в 1820 году совершенно случайно датский ученый Ханс Христиан Эрстед обнаружил магнитные свойства провода с электричеством во время проведения лекции по физике в университете. Также была обнаружена зависимость ориентации магнитной стрелки от направления протекания тока в проводнике.

Проведенный опыт доказывает наличие поля с магнитными характеристиками вокруг провода с током, на которое реагирует намагниченная стрелка или компас. Ориентация протекания «переменки» заставляет поворачиваться стрелку компаса в противоположные стороны, сама стрелка расположена по касательной электромагнитного поля.

Для выявления ориентации электромагнитных потоков применяют правило буравчика, или закон правого винта, которое гласит, что, ввинчивая шуруп по курсу протекания электротока в шунте, путь верчения рукоятки задаст ориентацию ЭМ потоков фона «переменки».

Также возможно использовать правило Максвелла правой руки: когда отодвинутый палец правой руки ориентируется по курсу протекания электричества, то остальные сжатые пальцы покажут ориентацию электромагнитной области.

Пользуясь этими двумя принципами, будет получен одинаковый эффект, используемый для определения электромагнитных потоков.

Закон правой руки для соленоида

Рассмотренный принцип винта или закономерность Максвелла для правой руки применим для прямолинейного провода с током. Однако в электротехнике встречаются устройства, у которых проводник расположен не прямолинейно, и для него закон винта не применим. В первую очередь, это касается катушек индуктивности и соленоидов. Соленоид, как разновидность катушки индуктивности, представляет собой цилиндрическую обмотку провода, длина которого во много раз больше диаметра соленоида. Дроссель индуктивности отличается от соленоида лишь длиной самого проводника, который может быть в разы меньше.

Французский специалист по математике и физике А-М. Ампер, благодаря своим опытам, узнал и доказал, что при прохождении по дросселю индуктивности электротока указатели компаса у торцов цилиндрической обмотки провода разворачивались обратными концами вдоль невидимых потоков ЭМ поля. Такие опыты доказали, что около катушки индуктивности с током образовывается магнитное поле, и цилиндрическая обмотка проволоки формирует магнитные полюса. Электромагнитное поле, возбуждаемое электротоком цилиндрической обмотки проволоки, подобно магнитному полю постоянного магнита – конец цилиндрической обмотки провода, из которого выходят ЭМ потоки, отображает полюс, являющийся северным, а противоположный конец является южным.

Для распознавания магнитных полюсов и ориентации ЭМ линий в дросселе с током употребляют правило правой руки для соленоида. Оно сообщает о том, что, если взять данную катушку рукой, разместить пальцы ладони прямо по курсу протекания электронов в витках, большой палец, отодвинутый на девяносто градусов, задаст ориентацию электромагнитного фона в середине соленоида – его северный полюс. Соответственно, зная позицию магнитных полюсов цилиндрической обмотки проволоки, можно определить трассу протекания электронов в витках.

Закон левой руки

Ханс Христиан Эрстед после открытия явления магнитного поля вблизи шунта в кратчайшие сроки поделился своими результатами с большинством ученых Европы. В результате этого Ампер А.-М., пользуясь своими методами, спустя короткий отрезок времени явил общественности эксперимент по специфическому поведению двух параллельных шунтов с электротоком. Формулировка опыта доказывала, что параллельно размещенные провода, по которым протекает электричество в одном направлении, взаимно придвигаются друг к другу. Соответственно, такие шунты будут взаимно отталкиваться при условии, что протекающая в них «переменка» будет распределяться в разные стороны. Эти эксперименты легли в основу законов Ампера.

Испытания позволяют озвучить главные выводы:

  1. Постоянный магнит, проводник с «переменкой», электрически заряженная движущаяся частица имеют вокруг себя ЭМ область;
  2. Заряженная частица, движущаяся в этой области, поддается некоторому воздействию со стороны ЭМ фона;
  3. Электрическая «переменка» является ориентированным перемещением заряженных частиц, соответственно, электромагнитный фон воздействует на шунт с электричеством.

ЭМ фон влияет на шунт с «переменкой» неким давлением, называемым силой Ампера. Указанную характеристику можно определить формулой:

FA=IBΔlsinα, где:

  • FA – сила Ампера;
  • I – интенсивность электричества;
  • B – вектор магнитной индукции по модулю;
  • Δl – размер шунта;
  • α – угол между направлением В и курсом электричества в проводе.

При условии, что угол α – девяносто градусов, то данная сила наибольшая. Соответственно, если данный угол равен нулю, то и сила нулевая. Контур этой силы выявляется по закономерности левой руки.

Если изучить правило буравчика и правило левой руки, получите все ответы на формирование ЭМ полей и их влияние на проводники. Благодаря этим правилам, есть возможность рассчитывать индуктивности катушек и при необходимости формировать противотоки. В основе принципа построения электродвигателей лежат силы Ампера в целом и правило левой руки в частности.

Видео

mob_info